$$\frac{\text{Lecture 5}}{\text{Gaussian graphical models.}} + \text{Interventions.} + iDAGs$$

$$G = DAG \text{ (directed acyclic graph)} = (cp1.E)$$
For us the nodes are random variables Xi , $i\in cp2$.
 $fauBic^{(Xa, XB|Xc)} = \frac{faic^{(Xa|Xc)}}{fauBic^{(Xa, XB|Xc)}} + \frac{faic^{(Xa|Xc)}}{faic^{(Xa|Xc)}}$
• local Markov properties associated to $G: \qquad \text{statements} \qquad X_{V} \coprod X_{nd(V) \setminus pa(V)} \mid X_{pa(V)}$
• Recursive factorization: $f(x) = \prod_{j \in V} f_j(x_j \mid X_{pa(j)})$

 $\frac{\text{Def}:}{\text{The parametric directed graphical model associated to the DAG G}{consist of all probability densities that factorize as}$

$$j = \prod_{j \in V} f_j(x_j)$$

<u>Theorem</u>: A prob. distrib. satisfies the recursive factorization prop. associated to the directed acyclic graph G ⇔ it satisfies the directed local MarKov prop. assoc. to G.

Example:

 $f(X) = f(X_1) f(X_2|X_1) f(X_3|X_1, X_2) f(X_4|X_1) f(X_5|X_2, X_3)$

- Separation for undirected G.
 <u>Def</u>: A pair of vertices a, b ∈V is separated by a set of vertices
 C ⊆ V \{a, b} if every path from a to b contains a vertex in C.
 - If A, B, C are disjoint subsets of V, we say that C separates A and B if a and b are separated by C for all aEA, beB.

- <u>Def:</u> Two nodes v and w in a DAG are d-connected given a set C = Vi {v,w} if there is an undirected path π from v to w such that (1) all colliders on π are in CUan(C) and (2) no noncollider on π is in C
 - If $A, B, C \subseteq V$ are pairwise disjoint with $A, B \neq \phi$, then C d-separates A and B if no pair of nodes a eA and $b \in B$ are d-connected given C.

• 2 is d-connected to 4 given 5,
$$2 \rightarrow 5 \leftarrow 4$$

1
• 2 is not d-connected to 4 given 1
2 $\rightarrow 3$ 4
 $2 \leftarrow 1 \rightarrow 4$
 $2 \rightarrow 5 \leftarrow 4$
 $C = \{i\} an(c)=\{\}$

- \rightarrow The global Markov property captures all the conditional indep. properties that are implied by the graph.
- <u>Def:</u> The directed global Markov property associated to a DAG G consists of all conditional indep. statements

$$X_A \amalg X_B | X_C$$
, for all disjoint sets A,B,C such that C
d-separates A and B in C.

<u>Thm</u>: If the random vector X has a joint prob. distrib. P that obeys the directed local Markov property for the directed acyclic graph G, then P obeys the directed global Markov property for the graph G.

- → Up to here we have characterized distributions that are Markov to a DAG. What about distributions for different DAGs?
- Let M(G) be the set of strictly positive densities that are Markov w.r.t. G.
- Two DAGs G1, G2 are Markov equivalent if M(G1)=M(G2) MEC = Markov Equivalence Class.
 Ex:

Graphical criteria for Markov Equiv. (Verma & Pearl 91)
 Two DAGs G1 and G2 belong to the same MEC
 they have the same skeleta (i.e. underlying und. graph) an v-structures is the same skeleta (i.e. underlying und. graph) an v-structures is the same skeleta (i.e. underlying und. graph) an v-structures is the same skeleta (i.e. underlying und. graph) an v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und. graph) and v-structures is the same skeleta (i.e. underlying und v-structures is the same skeleta (i.e. underlying v-structures is the same skeleta (i.e. underlying v-structures is the same skeleta (i.e. underlying v-structures is the same skeleta (i.e.

Ρ	4	7	\gtrsim
#MEC	185	312510571	?
#MEC #DAGS	0.34	0.27	≈ 0.25 , conjecture as $\rho \rightarrow \infty$

Conjecture ⇒ a MEC has≈4 DAGs ⇒ few experiments are needed to identify the DAG.

Interventions and their DAGs. → Modify the distributions, soft vs. perfect interventions

Let $I \subseteq [p]$ be an intervention target. i.e. nodes to be intervened.

<u>Def</u>: Under a general intervention target $I \subset [p]$ the interventional distribution $f^{(I)}$ can be factorized as

$$f^{(I)}(X) = \prod_{i \in I} f^{(I)}(X_i | X_{\rho q_{G}(i)}) \prod_{j \notin I} f^{(\emptyset)}(X_j | X_{\rho q_{G}(j)})$$

where $f^{(I)}$ and $f^{(\phi)}$ are the interv. and obsv. distrib. over X respect.

1

Note $f^{(I)}(X_j | X_{po_G(j)}) = f^{\emptyset}(X_j | X_{pa(j)})$ $\forall j \notin I$ i.e. conditional distributions of non-targeted variables are invariant to the interv.

Let $\{f^{(I)}\}_{I\in I}$ denote a collection of distr. over X indexed by I.

Def 3.3: For a DAG G and interventional target set I, define

$$\mathcal{M}_{\mathcal{I}}(G) \coloneqq \left\{ \{f^{(\mathcal{I})}\}_{\mathcal{I}\in\mathcal{I}} \mid \forall \mathcal{I}\in\mathcal{I} : f^{(\mathcal{I})} \in \mathcal{M}(G) \text{ and} \\ f^{(\mathcal{I})}(X_j \mid X_{pa_{\mathcal{C}}(j)}) = f^{\emptyset}(X_j \mid X_{pa_{\mathcal{G}}(j)}) \quad \forall j \in \mathcal{I} \right\}$$

- $\mathcal{M}_{\mathcal{I}}(G)$ is the set of interventional distributions that can be generated from a DAG G by intervening according to \mathcal{I} .
- <u>Def</u>: (I-Markov equivalence). Two DAGs G, and G₂ for which $M_{I}(G_{1}) = M_{I}(G_{2})$ belong to the same I-Markov equivalence class (I-MEC).
- (1) I-DAGS
- (2) Generalize Verma & Pearl.

 $\mathsf{Def}_{:}$ Let G be a DAG and I intervention targets.

 G^{I} is the graph G augmented with I-vertices $\{\xi_{I}\}_{I \in \mathcal{I}}$ and I-edges $\{\xi_{I} \rightarrow i\}_{i \in I \in \mathcal{I}, I \neq \emptyset}$

Example:

 Def:
 (I-Markov Property). Let I be intervention targets with Ø∈I

 and suppose {f^(I)}IEI is a set of (strict positive) probab distrib.

 over X1,..., Xp indexed by I∈I. {f^(I)}IEI satisfies

 the I-Markov property w.r.t. the I-DAG G^I iff

 (1) f^I ∈ M(G) #I∈I

 (2) f^(I)(XA|Xc) = f^{\$\$\$\$}(XA|Xc) for any I∈I and any

 J≠I}

 disjoint A, C ⊂ [p]. s.t. CU{_TII</sub>

- $\frac{Prop}{Prop}: Suppose \quad \phi \in \mathcal{I}. \text{ Then } ff^{(I)} |_{I \in \mathcal{I}} \in \mathcal{M}_{I}(G) \iff \{f^{(I)}\}_{I \in \mathcal{I}} \text{ satisfies}$ the I-Markov prop. w.r.+ $G^{\mathcal{I}}$.
- <u>Thm</u>: Suppose $\phi \in \mathcal{I}$. Two DAGs G₁ and G₂ belong to the same \mathcal{I} -MEC \Leftrightarrow their \mathcal{I} -DAGS $G_1^{\mathcal{I}}$, $G_2^{\mathcal{I}}$ have the same skeleta and v-structure s.

Examples:

$$(1) \longrightarrow (2)$$

$$\downarrow \qquad \downarrow$$

$$(4) \longrightarrow (3)$$