


/\ec‘lvre 5  Gavussian graphical models. + Tnterventions. + (DAGs

G= DAG (directed acyclic graph)
= (cpl. E)

For us the nodes are

random variables  X¢ . cecp)

a1
‘FAUB|C(XA'XBIXC): " ferc(Xalxe)
local  Markoy properties associated to G: )
set of all conditional mdep statements Xy 1L XM) lXpafv)_
A 8 c
* Recursive factorization:

'F(X):' —”- -FJ(XJ IXPij))
JEV

Def: The parametric diected graphical model associated fo the DAG 6
consist of all probability densities that factorize as

‘F(X)= m {:j(xj |Xpa(d'))

jev

Theorem: A prob. distrib. satisfies the recursive Factorization prop.
associated to the directed acyclic qraph G & it satisfies the
directed local MarKov prop. assoc. fo G

Examgle:

V=12 214 |4
U palz) = {1}

@-—?@ @ nd (2) = 4
\L/ V=3

3LI_4|1,2

FOX) = FO0 F0xal) § (Xl X0 Xa) (X 1%0) F(Xs | Xa, X3)

Separation for yndirected 6.
Def:+A par of vertices

a.beV s separated by a set of vertices
CeV\ia, by f every path from a to b contams a vertex m C.

« If A.8,C are disjoint subsets of V, we say that C separates
Aad B 1f a and b qre separaJred by C for all acA. be®



For whot comes we need

*dlrQCJTPd paﬂ'\s: o —> o —>0 .00
vundirected paths: o— 0 —0¢—0é—p
Collider hon - collider.

Dif'- Two nodes v and w in a DAG are d-connected given a sef
CeVifv.wy f there s an undirected path
from v o w  such that
(1) all colliders on T are i CUan(C) oand

(2) no noncollider on T 15 n C.

*If AB.CSV are parwise dl'S\"om-l' with A.B + ¢ then C  d-separates
A and B if no pair of nodes aeA and beB are d-connected given C.

Example -
2 1s d-copnecled to 4 Qiven 5 2-5«4

/J/\ © 2 s not d-connected to 4 qiven
@—a@ @ 26 1 — 4

\ | 2— 5 4
G C={} an(C)={]

» The global Markov property caplures oll the conditional indep. properties
that are umplied by the graph,

Def. The directed global Markoy property associated to a DAG 6
consists of all conditional mdep. statements

Xa UL¥Xg|Xc., for all drs\joer sets A.B.C such thet C

d-separates A and B8 n C.

v let Mlaca[(@): {dl'sjrrib- that satrsty local Markov prop$.
Ma[obql (G) = { " ”9|u[oa| f— “§




Thm: Tf the random vector X has a jomt prob. distrib. P +hal
obeys the directed local Markov property for the directed
acyclic graph G. then P obeys the directed global Markov property for
the qraph G.

Slmpler criteria for d—separa+:‘on:
For a DAG G, let G™ denote s wmoralization:

U—v = Ye— Vv

u v w v

\W[ — \/
w

Prop. ket G be a DAG. Then C d-separates A and B m G
Ff C separates A and B n the mgralizatron
m
( GQY\(AUBUC)\
Tnduced subgraphs on these nodes

> Up o here we have characterized distribotione that are
Markov 4o a DAG. What about distribotions for different DAGS?

v Lot M(G) be the set of S‘I'r('ch posf’rh/e densities that are
MorkKov w.r.t. G.

+ Two DAGs 6, Gx are Markov equivalent f M (6.)=M(6)
MEC= Markov Eguivalence Class.

Ex:
@\ /@ @\ ® O @
@ MEC @f x’@/
11023 112z

e Grqphfca{ criteria -For Mar Kay EgrUN' (Verma & Pear) Q1)
Two DAGs Gi and G2 belong to the same MEC & they have
the same skeleta (j.e. unJerlgw\j und. t‘-]rap\n) ah  v-structures L\a../K



P 4 7 0

AMEC | 85 31251053 7
#MEC 0.34 023 ~ 025

£ DAGS S CONTECTUEE as 0>

Conjectore = a MEC hasx4 DAGs = few experiments are needed
to ldenh\c‘j the DAG.

Tntecvontions and ther DAGS.
=~ Modify the distributions, soft vs. perfect intecventions

Let T <Cp) be on mtervention target. ce. nodes to be
intervened .

Def Under a ganera[ intervention target T cp] +he inter ventional
distribution £ can be factorized as

(0= _”; WC(I)( Xi ) X pag ) Ejm(xﬂxmem)
(€ i

where ) and $ are the mterv. and obsv. distrib over X
respect.

Note -F(I)(XJ' /)(Paé(j)) = -F¢(XJ'))<PMJ-)) V’jé I e conditional

distcibutions of  non-targeted
variables are wvariant +o the interv.

J

PO

T=1223}

F(x), $(xalX3.%X2)  are mvaciant

@e— O



L€,+ ‘F(I))IGI denote o collection of distr. over X indexed bj
T

Def 2.3. For a DAG G and mterventional +arﬂe+ set T, defimme

Mo (6)={ 4 Pzex | wIeT . {CI’eVu(G) and
FEX; 1X g )= P (X 1 %pagcp) VjGIf

My (6) s the set  of mterventional distributions that can be generated from
a DAG G by tervenny accurdmtj to L.

Def: (T-Morkov eguivalence). Two DAGs G and Ge for which My (6)=M£(62)
belong to the same T-Markov equivalence class (T-MEec)

() T-DAGs
(2)  Generalize Vermg & Peacl.

Qgiz let G be a DAG and T intervention +arg¢+s.

Gt is +he Sraph G au\gmen‘fed with  T-vertices HI] 1cT
and ’I—adﬂes {ZI-PLHGIQI,I# 9

Example: 0—®@—0® I{I, L
\@ fzusi {a]

D_Qf_: (’I—Markov proper'l'g). L€+ I be m'fer\/er\{'t'on +arge+s Wi-H’l SZSEI

and suppose {fFfrer 15 a set of (strich positive) probab distrib-

over X, Xp mdexed by ITeT. [PV e sabrsties

the T-Markov property w.rt. the TL-DAG T 4t

() $TeM(6) ¥IeT tng={¢,: JeT
T41]

(2) _F(I)(XA])(C):_FWX,«}XC) for any TET ar\d O.h(:j
dis&om# A.Cclpl . s4 (:Ui,l\rL d-gepara'h’s A and L GI,



PFOEZ: Suppose ¢ € L. Then Hmﬂiez eMr(6) = {§P(zex sdlisties
the T-Markov prop. w.r.t gl_

Thm:  Suppose ¢ef[ Two DAGs G and 6. belong to the same
T-MEC & ther T-DAGS GF _ GI  hove +he same
skelefa and v-structoure S

Examples:
00— —0
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