


Lectures Gaussian graphical models .
t Interventions

.

t e- DAGS

G= DAG ( directed acyclic graph )
= ( Cpl . E )

For us the nodes are random variables Xi
.

e- Ecp]
. FAUBICIXA.iq/xcy=.tAidXAlXc)fB1clXAIXc)

• local Markov properties associated to G : #

set of all conditional indep statements Xv I Xndcvhpacv) I Xpacv)
.

F- - -B C

° Recursive factorization : f- txt = It fjlxjlxpacj , )

DEI The parametric directed graphical model associated to the DAG G

consist of all probability densities that factorize as

f- ( x ) = jvfjlxjlxpacjs )

theorem A prob.
distrito

.
satisfies the recursive factorization prop .

associated to the directed acyclic graph G # it satisfies the

directed local Markov prop. assoc
.

to G
.

Examine:
① f- 2 214 I 1
← path ) -- { 13
②→ t③\⑨ nd 121--4

\ tf v =3 31411.2
⑤ L

f- ( X ) = f- ( Xi ) f- ( Xzlx, ) f- ( Xs IX. Xz) f- ( Xalxi ) f- ( Xs 1×2×3 )

• Separation for undirected G
.

Def: • A pair of vertices a. b EV is separated by a set of vertices

( EV' ya . bl if every path from a to b contains a vertex in C
.

• If A. B. C are disjoint subsets of V. we say that C separates
A and B if a and b are separated by C for all AEA , be B.



For what comes we need
* directed paths : • → • → • . . - • → •

* undirected paths : •→ • → •← •← •

Toki der Yon
- Collider

.

DEI Two nodes v and w in a DAG are d - connected given a set

CE Vil v. WI if there is an undirected path IT

from v to w such that

(1) all colliders on IT are in Cuanlc ) and

(2) no non Collider on IT is in C
.

• If A. B. CEV are pairwise disjoint with A. B t ¢
,
then C d - separates

A and B if no pair of nodes a EA and be B are d- connected given C
.

Example :
-

o 2 is d - connected to d given 5
,

2 → 5<-4

①
← I • 2 is not d - connected to 4 given I

②→③\⑨ 2.← a → a

\l⑤f 2 → s ← a

C -- fi ) an (C) =/ )

→ The global Markov property captures all the conditional indep . properties
that are implied by the graph .

Def The directed global Markov property associated to a DAG G

consists of all conditional indep . statements

XAHXBIXC , for all disjoint sets A. B. C such that C

d- separates A and B in C
.

• Let Allocate G) = { distrito . that satisfy local Markov props
.

µ global (G) =L
"-

'

global
"
-

" f
.



Thmi If the random vector X has a joint prob.
distrito

.

P that

obeys the directed local Markov property for the directed

acyclic graph G
.
then P obeys the directed global Markov property for

the graph G
.

Simpler criteria for d - separation :

For a DAG G
.
let GM denote its moralization :

U → V t U
area V

Iwf ↳
"

go.ir
W

Propi Let G be a DAG
.
Then C d- separates A and B in G

Iff C separates A and B in the moralization
( Gant AUBVC) )

'm

→ Induced subgraphs on these nodes

→ Up to here we have characterized distributions that are
Markov to a DAG

.
What about distributions for different DAGS ?

• Let MCG ) be the set of strictly positive densities that are

Markov w .
rt

. G
.

• TWO DAGS Gi
,
Ga are Markov equivalent if MCG . )=M( Gz)

MEC := Markov Equivalence Class
.

Ex :
-

① ② ① ② ① ②
T t n b f t
③ MEC ③ ③

f

11213 112/3

• Graphical criteria for Markov Equiv.

( Verma & Pearl 91 )
Two DAGS Gn and 62 belong to the same MEC ⇐ they have
the same skeletal i. e. underlying und . graph) ah v - structures jl

"



P

#MEc¥¥÷!os7#MEI = 0.25

# DAGS ↳ CONJECTURE as p →

Conjecture ⇒ a MEC has 24 DAGS ⇒ few experiments are needed
to identify the DAG .

Interventions and their DAGS
.

→ Modify the distributions
,
soft us . perfect interventions

Let IE Cp) be an intervention target . i.e
.

nodes to be

intervened
.

DEI Under a general intervention target Iacp] the interventional
distribution ft ' can be factorized as

f-
'I' ( x ) -- It, ftttlxilxpqcis) It

' lxjlxpa.gs )

where ft 't ) and ft are the intern
.
and obsv

. distrito
. over X

respect .

Note ftttlxjlxpq.gs/=f0lXjlXpaijDV- yet I i. e .

conditional

distributions of non - targeted

ga
variables are invariant to the intern.

Ex : ①→ ② I -- f 2.35

t t f- ( X . ) , f- ( xalxz.kz ) are invariant

•→ ③→⑨



Let { f-
' I' IIe I denote a collection of distr . over X indexed by

T
~

.

Def3. For a DAG G and interventional target set I
,
define

MI ( G ) I { ft IIe I l FIE I i ft EMIG) and

f- 'I'( Xj lxpaq.it f-
0 (Xj lxpagcjs) tj C- I }

MI ( G ) is the set of interventional distributions that can be generated from
a DAG G by intervening according to I .

Def : ( I- Markov equivalence ) .

Two DAGS G, and Ga for which MI ( G . )=MIlGz)

belong to the same I- Markov equivalence class ( I- MEC)
.

117 I - DAGS

(2) Generalize Verma & Pearl
.

De Let G be a DAG and I intervention targets .

GI is the graph G augmented with I- vertices I }±f If I
I # 0and I - edges { ZI → it IEIEI

,
I #¢

Example : ①→ ② → ③ I-- III . Teal
-

l,→ fg 12.31 Yal
.

DEI LI- Markov property ) .

Let I be intervention targets with OEI
and suppose { FCIYIEI Is a set of ( strict . positive) probab.

distrito .

over Xi
. . . . . Xp indexed by IEI .

If# ' IIEI satisfies

the I- Markov property iv. r -

t
.
the I- DAG GI iff

( M f
' EM ( G ) HIEI LIII =L Ss : JE I

(2) f- '⇒ IXAIXC ) -- f ( XAIXC) for any IEI and any JFII

disjoint A. Cccp] . s -
t . CUE I d- separates A and It in GI,



Prep : Suppose ¢ EI . Then { f'I' IIEI EMI ( G) # { f'I' IIEI satisfies

the I- Markov prop . iv. r -
t GI .

-hm Suppose ¢ EI .

Two DAGS G, and Gz belong to the same

I- MEC ⇐ their I - DAGS GF
,

GE have the same

Skeletor and v- structures
.

Example
①→ ② →③

① →②
t t
④⇒③


