Lecture 4:
Summary:
(DEF)

* Discrete exponential families are toric varieties
* Hypothesis testing for DEF using an exact Fisher test is closely related to toric ideals a.K.a Markov basis.
* Conditional indep. statements for discrete models, in several cases these are also DEF. e.g. decomposable models.
* Today: Maximum likelihood degree

Chs, Ch7. Sullivant, Lectures in Algebraic Statistics.
Def: Let $D=\left\{X^{(1)}, \ldots, X^{(n)}\right\}$ be data from the same model with parameter space Θ. For discrete data, the likelihood function is

$$
\mathcal{L}(\theta \mid D):=P_{\theta}(D)
$$

\rightarrow What is the prob. of observing D, if θ is the parameter.
\rightarrow This is a function of θ, with D fixed.
Def: The maximum likelihood estimate (MLE) $\hat{\theta}$ is the maximizer of the likelihooh function

$$
\hat{\theta}=\arg \max _{\theta \in \Theta} L(\theta \mid D)
$$

Prop: Let Mx»y be the indep. model. $\quad \lambda=\left[r_{1}\right], y=\left[r_{2}\right]$. Let $u \in \mathbb{N}^{r_{1} \times r_{2}}$ be the table of counts, obtained from i.i.d samples
 be the table of marginals and $n=u_{++}$the sample size.

$$
\hat{P}_{i_{i, i}}=\left(\frac{u_{i_{1}+}}{n}\right)\left(\frac{u_{+i_{2}}}{n}\right)
$$

When $D=X^{(1)}, \ldots, X^{(n)}$ are i.i.d. samples, then

$$
\begin{aligned}
L(\theta \mid D) & =L\left(\theta \mid x^{(1)}, \ldots, x^{(n)}\right) \\
& =p_{\theta}\left(x^{(1)}, \ldots, x^{(n)}\right) \\
& =\prod_{i=1}^{n} p_{\theta}\left(x^{(i)}\right)=\prod_{j \in(r)} p_{\theta}(x=j)^{u_{j}}
\end{aligned}
$$

\rightarrow When D is summarized as $u=\left(u_{1}, \ldots, u_{r}\right), \Rightarrow$ multiply times coeff $=\binom{n}{u} \rightarrow$ multinomial.
$\rightarrow \quad \log$-likelihood. $\quad \ell(\theta \mid D)=\log L(\theta \mid D)=\sum_{j=1}^{r} u_{j} \log \left(p_{j}(\theta)\right)$
One way to find the MLE is to look at the solutions of the score equations $\nabla l(\theta \mid D)=0$ because max occurs at a critical pt.

$$
\begin{aligned}
& \left\{\frac{\partial}{\partial \theta_{i}} l(\theta \mid D)=0, \quad i=1, \ldots, d\right. \\
& \Leftrightarrow\left\{\sum_{j=1}^{r} \frac{u_{j}}{P_{j}} \frac{\partial p_{j}(\theta)}{\partial \theta_{i}(\theta)}, \quad i=1, \ldots, d\right.
\end{aligned}
$$

Thy: Let $M_{\theta} \subseteq \Delta_{r-1}$ be a statistical model. For generic data, the number of solutions of the score equations is independent of u. pf. See Sullivant, Algebraic Stat. p. 139.

Rok: This is a theorem over $\mathbb{C}, u \in \mathbb{N}^{r}$, but $u \in \mathbb{C}^{r}$ is ok. Generic means the theorem holds in the complement of a proper subvariety of \mathbb{C}^{r}.

Def: The number of solutions to the score equations for generic u is called the "maximum likelihood degree" of the statistical model.

Examples:
(1) $M_{x \Perp y}$ has $M L D=1, \quad \hat{p}_{i}$ is infact a rational function of u_{i}.

Having MLD=1 is the same as saying \hat{p}_{i} is a rational function of the data.
(2) DEFs do not in general have $M L D=1$. Only in some instances, e.g. Decomposable models.
(3) MLEs for DEF exist and can be compute nicely via. Algorith: Iterative proportional fitt!ng/scaling.

MLE for log-linear models, A integer matrix 1 Erowspan (A)
Prop: Let $A \in \mathbb{N}^{d \times k}, u \in \mathbb{N}^{k}$ be a vector of positive counts.
The MLE of the frequencies $\hat{u}_{i}=\hat{n}_{i}$ in the log-linear model M_{A} is the unique non-negative solution to the simultaneous system of equations

$$
A \hat{u}=A \text {, and } \hat{u} \in V\left(I_{A}\right)
$$

pf. Use Lagrange multipliers and $\log -l$ likelihood recall that $p \in M_{A} \Leftrightarrow \log (\rho)=x A, x \in \operatorname{rowspan}(A)$.

Iterative proportional fitting. Suppose A has the property that all column sums are a.
INPUT: Matrix $A \in \mathbb{N}^{k \times r}$, a vector $h \in \mathbb{R}_{>0 \text {, counts }}^{r} u \in \mathbb{N}^{r}$,
tolerance, $\varepsilon>0$.
OUTPUT: ALE $\hat{\rho} \in \mu_{A, h}$ given u.
Step 1: Initialize a distribution $p \in \mathcal{M}_{A, h} . \quad e . g=\frac{h_{i}}{\sum h_{i}}$
Step 2: While $\left\|A_{p}-A \underline{u}\right\|>\varepsilon$ do: For all $i \in[r]$ set $p_{i}:=p_{i} \cdot\left(\frac{\phi_{i}^{A, h}(A u / n)}{\phi_{i}^{A, h}\left(A_{p}\right)}\right)^{1 / a}$
Step 3: Output $\hat{p}=p$.

