Lecture 1:
Statistical Models
Exponential families
Tonic varieties
We describe discrete random variables in terms of its probability distributions and continues random variables in terms of its density functions.
X a random variale. discrete \rightarrow probability distribution continuous \rightarrow density function

Example 1:
(1) Suppose $\theta \in(0,1)$. X is a binomial random variable

$$
P(x=0)=\theta, P(x=1)=(1-\theta)
$$

"success" "failure"
(2) Suppose X is a univariate random variable with mean $=\mu$ and variance $=\sigma^{2}$
X has density function

$$
\begin{aligned}
& \text { density function } \\
& f\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
\end{aligned}
$$

Def:

- A statistical model M is a collection of probability distributions or density functions over a given space.
- A parametric statistical model \mathcal{M}_{Θ} is the image of a map from a finite dimensional parameter space $\Theta \subset \mathbb{R}^{d}$ to a space of probability distributions or density
functions. i.e. $\quad P_{0}: \Theta \longrightarrow M_{\Theta}, \quad \theta \mapsto P_{\theta}$,

$$
\mathcal{M}_{\Theta}:=\left\{P_{\theta}: \theta \in \Theta\right\}
$$

- For each parameter value in the model, we want each P_{θ} to be uniquely determined by θ.
\rightarrow If this is the case, we say the model is identifiable.
Example 2:
(1) The binomial random variable model. Take $\Theta=(0,1), \quad P_{0}: \Theta \rightarrow M_{\Theta} \subseteq \mathbb{R}^{2}$

$$
\theta \mapsto(\theta, 1-\theta)
$$

(2) The normal random variable model

$$
\begin{aligned}
& \Theta=\mathbb{R} \times \mathbb{R}_{>0} \\
& (\mu, \sigma) \longmapsto f(x \mid \mu, \sigma)
\end{aligned}
$$

(3) The probability simplex.

Consider a discrete random variable X with outcome space $\lambda^{\prime}=\{1, \ldots, r\}$, fix $p_{i}=P(x=i)$.
The set of all possible probability distributions for X is the probability simplex

$$
\Delta_{r-1}=\left\{\left(p_{1}, \ldots, p_{r}\right) \in \mathbb{R}^{r}: \quad p_{i} \geqslant 0, \quad p_{1}+p_{2}+\cdots+p_{r}=1\right\}
$$

\rightarrow Discrete statistical models are subsets of the probability simplex
(4) The independence model. $X=$ discrete r.v. with outcome space $\{1, \ldots . r\}$ $y=1$ \qquad
Denote the joint distribution of X and Y by $P_{i j}=P(X=i, Y=j)$

$$
\begin{gathered}
P_{0}: \Theta=\Delta_{r-1} \times \Delta_{c-1} \rightarrow \Delta_{r c-1} \\
\left(a_{1}, \ldots, a_{r}\right) \times\left(b_{1}, \ldots, b_{r}\right) \mapsto\left(a_{1} b_{1}, \ldots a_{r} b_{r}\right) \\
M_{\times \Perp y=}=\left\{p_{\theta}: \theta \in \Delta_{r-1} \times \Delta c-1\right\} \\
r=2
\end{gathered} \quad\left(a_{1} b_{1}, a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2}\right) .
$$

\rightarrow The independence model is the Segre-embedding

$$
\mathbb{P}^{c-1} \times \mathbb{P}^{r-1} \rightarrow \mathbb{P}^{c-1}
$$

6.1. Regular exponential families

This definition is for discrete and continuous random variables.
$\lambda^{\prime}=$ sample space with σ-algebra A.
$v=\sigma$-finite measure on $A, \quad \lambda$ is countable union of
$T=\lambda \rightarrow \mathbb{R}^{k}$ is a statistic. measurable sets with finite measure.
ie a measurable map.

$$
T^{-1}(\text { meas. set }) \text { is meas. in } A \text {. }
$$

We define the natural parameter space

$$
N=\left\{\eta \in \mathbb{R}^{k}: \int_{\lambda^{\prime}} h(x) \cdot e^{\eta^{t} T(x)} d v(x)<\infty\right\}
$$

For $\eta \in N$ we define a prob. density P_{η} on λ^{\prime} as

$$
P_{\eta}(x)=h(x) e^{\eta^{t} T(x)-\phi(\eta)}
$$

Where $\quad \phi(\eta)=\log \left(\int_{x} h(x) e^{n^{t} T(x)} d v(x)\right) \rightarrow \begin{aligned} & \text { This is the } \\ & \text { normalizing }\end{aligned}$ normalizing constant

Let P_{η} be the probability measure on (λ, A) that has v-density p_{n}.

Def: Let K be a positive integer. The probability distributions $\left(P_{\eta}: \eta \in N\right)$ form a regular exponential family.

- To show a family is a regular exponential family. find $h(x), T(x)$ and show the family has the desired form.

Example:
(1) Binomial random variable model
(2) Univariate Normal random variable.

More examples in Ch. 6.

Discrete Regular exponential families
Regular exponential families for discrete random variables.

- $\lambda=[r]=\{1, \ldots, r\} \rightarrow$ discrete outcome space.
- $T: \lambda \longrightarrow \mathbb{R}^{k} \Rightarrow T(x)$ is a vector for each $x \in[r]$.
- $h: \lambda^{\prime} \rightarrow \mathbb{R} \Rightarrow h$ is a vector $(h(1), \ldots, h(r))$
- For $n \in \mathbb{R}^{k}$, the normalizing constant $\phi(\eta)$ is a sum

$$
Z(\eta)=\sum_{x \in[r]} h(x) e^{\eta^{t} \cdot T(x)}
$$

- If $x \in[r] \Rightarrow$ the exponential family is given by

$$
P_{\eta}(x)=h(x) e^{n^{t} \cdot T(x)-\phi(n)}
$$

Look at η^{t}. $T(x)$. Write $T(x)=a_{x}=\left(\begin{array}{c}a_{1 x} \\ \vdots \\ a_{k x}\end{array}\right), \eta=\left(\begin{array}{c}n_{1} \\ \vdots \\ \eta_{k}\end{array}\right)$

$$
\theta_{i}=\exp \left(\eta_{i}\right)
$$

Set $h=\left(h_{1}, \ldots, h_{r}\right) \in \mathbb{R}_{>0}^{r}$

$$
\begin{aligned}
& P_{n}(x)=h(x) e^{n^{t} T(x)-\phi(n)} \\
&=\frac{h_{x} e^{\left(n_{1}, \ldots, n_{k}\right) \cdot\left(a_{1 k}, \cdots, a_{k x}\right)^{t}}}{\phi(n)} \\
&=\frac{h x e^{n_{1,1}} \cdots e^{n_{k} a_{k x}}}{\phi(n)} \quad\left[=\frac{h_{x} \theta_{1}^{a_{1 x}} \cdots \theta_{k}^{a_{k x}}}{z(\theta) \cdot}\right. \\
& z(\theta)=\sum_{x \in(r)} h_{x} \theta_{1}^{a_{1 x} \cdots \theta_{k}^{a_{k x}}}
\end{aligned} \quad\left[\begin{array}{l}
\end{array}\right.
$$

If $a_{j x}$ are integers $\Rightarrow P_{\theta}(x)$ are rational functions on θ.
Another way to describe distributions in an exponential family.

$$
\begin{aligned}
& \log \left(p_{\theta}(x)\right)=\log \left(h_{x}\right)+\left(\log \left(\theta_{1}\right), \ldots, \log \left(\theta_{k}\right)\right)\left(\begin{array}{c}
a_{1 x} \\
\vdots \\
a_{k x}
\end{array}\right)-\log (z(\theta)) \\
& \log \left(p_{\theta}\right)=\log (h)+\left(\log \left(\theta_{1}\right), \ldots, \log \left(\theta_{k}\right)\right) A-1 \log (z(\theta))
\end{aligned}
$$

If $1 \in \operatorname{rowspan}(A) \Rightarrow v A=1$ for some $v \in \mathbb{R}^{k}$

$$
\Rightarrow \quad \log \left(P_{\theta}\right)=\log (h)+\left(\log (\theta)^{t}-\log (z(\theta)) v^{t}\right) A
$$

$P_{\theta} \in \Delta_{r-1}$ is a member of the family if

$$
\log \left(P_{\theta}\right) \in \operatorname{Span}\{\log (h)+\operatorname{rowspan}(A)\}
$$

Def: Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $1 \in \operatorname{rowspan}(A)$ and let $h \in \mathbb{R}_{>0}$. The log-affine model associated to these data is the set of probability distributions

$$
M_{A, h}:=\left\{p \in \operatorname{int}\left(\Delta_{r-1}\right): \quad \log (p) \in \log (h)+\operatorname{rowspan}(A)\right\}
$$

If $h=1$, then $\mu_{A}=\mu_{A, 1}$ is called a log-linear model.
These are toric varieties.
Def: h, A as before. The monomial map associated to this data is the rational map

$$
\phi^{A, h}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{r}, \quad \phi_{j}^{A, h}(\theta)=h_{j} \prod_{i=1}^{k} \theta_{i}^{a_{i j}}
$$

we removed $Z(\theta)$ to homogenize the map.

Def: h, A as before. The ideal $I_{A, h}:=I\left(\phi^{A, k}\left(\mathbb{R}^{k}\right)\right) \subseteq \mathbb{R}[p]$ is the toric ideal associated to the par A, h. If $h=1$, we write $I_{A}=I_{A, 1}$.

$$
P_{j} \mapsto P_{j} / h_{j}
$$

Prop: Let $A \in \mathbb{Z}^{k \times r}$ be a $k \times r$ matrix of integers. Then the toric ideal I_{A} is a binomial ideal and

$$
I_{A}=\left\langle p^{u}-p^{v}: u, v \in \mathbb{N}^{r} \text { and } A u=A v\right\}
$$

If $1 \in \operatorname{rowspan}(A)$, then I_{A} is homogeneous.
Example: The independence model. Ex. 6.2.6.

