Exercises Discussion Session 1

Toric Varieties, Exponential Families, Examples of graphical models.
(1) Let $\left(X_{1}, X_{2}, X_{3}\right)$ be a vector of binary random variables. Consider the following two graphs.

$$
G_{1}:(1) \longrightarrow(2) \longrightarrow(3) \quad G_{2}: \text { (1) (3) }
$$

Write a polynomial parametrization of the model $\mathcal{M}\left(G_{1}\right)$ and write down the matrix A that defines the monomial parametrization of the model $\mathcal{M}\left(G_{2}\right)$. Find the implicit equations that define these models either by hand or by using a computer algebra software like Macaulay2. How do the two polynomial parametrizations compare?
(2) Write down the matrix A for the undirected graphical model of the graph shown below and find its defining equations either by hand or using a computer algebra software like Macaulay2. Here the nodes of the graph represent discrete binary random variables.

(3) Prove that the family of pdfs $\left\{f\left(x \mid \mu, \sigma^{2}\right):\left(\mu, \sigma^{2}\right) \in \mathbb{R} \times \mathbb{R}_{>0}, f\right.$ is a normal density $\}$ is an exponential family.
(4) Why do is it that in Algebraic Statistics Δ_{r-1}° is identified with $\mathbb{P}_{\mathbb{C}}^{r-1}$
(5) Consider the following two staged trees $\mathcal{T}, \mathcal{T}^{\prime}$. Prove that the tree on the left is balanced. Now consider \mathcal{T}^{\prime} on the left. What are all possible choices of stages you can make in the second to last level in such a way that \mathcal{T}^{\prime} is also balanced.

(4) Prove Proposition 1.3 in the slides, or read the proof from Sullivant (2018) Proposition 6.2.4., or ask a friend.

Extra remarks

- For a quick intro to ideals, polynomials and varieties check out Kahle u. a. (2018) available at the arxiv https://arxiv.org/pdf/1705.07411.pdf.
- The computer algebra package Macaulay2 is great to find implicit descriptions of varietes/statistical models. You can try it out here https://www.unimelb-macaulay2. cloud.edu.au/\#home
-- Ring for the distributions
R=QQ[p00, p01,p10,p11]
-- Ring for the parameters
$\mathrm{S}=\mathrm{QQ}[\mathrm{s} 0, \mathrm{~s} 1, \mathrm{t0} 0 \mathrm{t} 1]$
-- A matrix for the model
A=matrix\{\{1,1,0,0\},
$\{0,0,1,1\}$,
$\{1,0,1,0\}$,
$\{0,1,0,1\}\}$
needsPackage("FourTiTwo")
toricMarkov(A,R)
--
-- Homogeneous version
restart
$\mathrm{SS}=\mathrm{QQ}[\mathrm{z}, \mathrm{s} 0, \mathrm{~s} 1, \mathrm{t} 0, \mathrm{t} 1]$
-- sum to one condition ideal
sto1=ideal(s0+s1-1,t0+t1-1)
-- quotient ring
S=SS/sto1
$\mathrm{R}=\mathrm{QQ}[\mathrm{p} 00, \mathrm{p} 01, \mathrm{p} 10, \mathrm{p} 11]$
mons=z*\{s0*t0,s0*t1,s1*t0,s1*t1\}
phiG=map(S,R,mons)
$\mathrm{I}=\mathrm{ker}$ (phiG)

