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Algebraic varieties
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Algebraic varieties
in applications

Polynomial optimization

Cifuentes, Harris, and Sturmfels. "The
geometry of SDP-exactness in quadratic
optimization.” Mathematical
Programming (2018): 1-30.

Computer vision

Agarwal, Sameer, et al.
, "Reconstructing rome."
£ Computer 43.6 (2010): 40-47.
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Does the system have solutions?

What is the dimension of the
solution set?

Can we write them explicitly?



Algebraic varieties
in applications

Macaulay2

Homotopy
Continuation jl

Computational
Algebraic Geometry
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Does the system have solutions?

What is the dimension of the
solution set?

Can we write them explicitly?



My Research Profile

Algebraic Statistics

Ananiadi and Duarte (J. Algebr. Stat.: in Rev.) 2020
Duarte, Marigliano and Sturmfels (Bernoulli: in Rev.) 2019
Duarte and Gorgen (J. Symb. Comput.) 2019

Guerra, Delgado-Baquerizo, Duarte, et al. (in Rev.)

Geometric Modeling

Duarte and Seceleanu (Math. of Comp.: accepted) 2020

Duarte (J. Algebra its Appl.) 2016
Duarte and Schenck (Proc. Am. Math. Soc.) 2014

Duarte and Francis (Conf. Proc. Transformables) 2013

2 Rigidity theory




Algebraic Statistics

Branch of mathematical statistics employing and developing tools from...

V4

X

Algebraic Geometry Commutative Algebra Discrete Geometry

...to tackle problems in statistics



Graphical Models

family of statistical models that
describes dependency relations
among variables using a graph

Structural equation models
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Bayesian networks

i e s

Staged tree models
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Graphical Models

family of statistical models that
describes dependency relations
among variables using a graph

Structural equation models
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(1agd) Temperature
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Bayesian networks

i e s

Staged tree models

Environment Activity SurYivaI Recqvery
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Discrete statistical models

Ay_1= {1, -oNn):P; = 0,p1 + -+ py =1}

a point is a choice of

distribution A discrete statistical model with
\ N outcomes is a family of
distributions inside the N-1
dimensional probability simplex



The independence model

X and Y are independent binary random variables
Poo + Po1 + Pig + P11 =1
P; =0
PooP11 — Po1P1o = 0

Ay XA, — A,

(SO'Sl)x(tOl tl) — (SOtOJSOtl:SltO:Sltl)
So+s1 =1

a point on the surfaceisa Lo T 11 = 1
distribution in the model



The independence model
is a graphical model

Staged tree Model

X Y
e
® © G e
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Bayesian network .\

O P11




Graphical Models Bayesian networks

i e s

family of statistical models that
describes dependency relations

among variables using a graph @

Staged tree models

Environment Activity Survival Recovery
1 1 1 1




Unfolding of events in a cell culture

Environment




Unfolding of events in a cell culture

Environment

eg+te; =1



Unfolding of events in a cell culture

Environment Activity




Unfolding of events in a cell culture

Environment Activity

O aqyta =a,+taz;=1



Unfolding of events in a cell culture

Environment Activity

@ Activity is independent
of the environment




Unfolding of events in a cell culture

Environment Activity Survival Recovery

@ Activity is independent
of the environment

° © In a hostile environment
a cell gets damaged and
might die or survive.
Survival does not
depend on activity

© () After survival, recovery
is not affected by history




Unfolding of events in a cell culture

Environment Activity Survival Recovery The staged tree model M
' ' is the image of
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Bayesian network approach

@ Activity is independent
of the environment

© In a hostile environment
a cell gets damaged and
might die or survive.
Survival does not
depend on activity

(O After survival, recovery
is not affected by history



Bayesian network approach

@ Activity is independent
of the environment
@ © In a hostile environment

a cell gets damaged and

might die or survive.
@ Survival does not
depend on activity

(O After survival, recovery

is not affected by history
@ Environment || Activity

(O Recovery || (Activity , Environment ) | Survival




Bayesian network approach

@ Activity is independent
of the environment
—acelgetsdamaged-and-

vt bonnon

(O After survival, recovery

is not affected by history
@ Environment || Activity

(O Recovery || (Activity , Environment ) | Survival




Bayesian network approach

Ce g

full

partia]
full

partig]
full

partia]
full

partia]
full

partia]

full
2 wed

partia]
full

die

@ Environment || Activity loy>

partia]
full

O\

@ ORecovery || (Activity , Environment) | Survival

partia]

O OO0 O0O0O0O0O0O0 O0O0O0O0O O0O0O0



Bayesian network approach
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Bayesian network approach

@ Environment || Activity

@ ORecovery || (Activity , Environment) | Survival




Properties of staged tree models

* Encode conditional independence statements

* Generalize discrete Bayesian networks

* They capture context specific information

* The outcome space is not necessarily a cartesian product

» 3-valent phylogenetic trees are staged tree models (Améndola et al. 2019)

Environment Activity Survival Recovery
1 1 1 1
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Toric varieties are a class of
algebraic varieties whose defining
equations only have two terms

Py + -+ P, —1,
P5P6_P2P7, P3P6_P0P7, P2P3_POP5,
kP4-P6_P1P7’ P2P4_P1P5, P1P3_POP4

* Discrete exponential families are toric varieties
* Discrete Bayesian networks with chordal graphs are toric varieties



What are the algebraic and geometric
properties of staged tree models?



When is a staged tree model a toric
variety/discrete exponential family?

Duarte and Gorgen (J. Symb. Comput.) 2019

What are the implicit equations What is the geometry of interventional
that define the model? distributions?

Ananiadi and Duarte (J. Algebr. Stat.: in Rev.) Duarte and Solus (in Prep.)



Unifying principle to study equations
of discrete graphical models



Geometric Modeling .« Algebraic Statistics
|

\c Geom

0,0 ¥ TN

Polytope (2D)

Polytopes with rational linear precision

Ay XA, —> As
(S0, S1)X(to, t1) ¥ (Soto, Sot1, S1to, S1t1)

? Rational Maximum Likelihood Estimator (IVILE)

Polytopes in higher

Ug+Uio Uo+U41 Ur+Uyo u1+u+1)

(oo, Uo1, Ur0, U11) < > T 2 T2 T2
Uiy Uiy Uiy Ui

Duarte, Marigliano and Sturmfels (Bernoulli: in Rev.)
dimensions Staged tree models have Rational MLE
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Are there any questions?

@ https //emduartz.github.io/
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