XIXD2XD2 -> D5 (So, S, ao, , as) ~> (Soa. $(S,S,) \times$ $\mathcal{T} = (V, E)$ PEJ = Z of all atomic prob. whose root to leaf paths go through V Soao P(v)= P1+P2 az- f35.az Sz **Algebraic geometry** https://emduart2.github.io/ with a view towards Max-Planck-Institut für Mathematik applications laturwissenschaften

DFG-Graduiertenkolleg MATHEMATISCHE KOMPLEXITÄTSREDUKTION

Dr. Eliana Duarte

Algebraic varieties

Algebraic varieties in applications

Polynomial optimization

Cifuentes, Harris, and Sturmfels. "The geometry of SDP-exactness in quadratic optimization." *Mathematical Programming* (2018): 1-30.

Does the system have solutions?

What is the dimension of the solution set?

Computer vision

Agarwal, Sameer, et al. "Reconstructing rome." *Computer* 43.6 (2010): 40-47.

Can we write them explicitly?

Algebraic varieties in applications

Homotopy Continuation.jl

Does the system have solutions?

Computational Algebraic Geometry

What is the dimension of the solution set?

Can we write them explicitly?

My Research Profile

Algebraic Statistics

Ananiadi and **Duarte** (J. Algebr. Stat.: *in Rev.*) 2020 **Duarte**, Marigliano and Sturmfels (Bernoulli: *in Rev.*) 2019 **Duarte** and Görgen (J. Symb. Comput.) 2019 Guerra, Delgado-Baquerizo, **Duarte**, et al. (*in Rev.*)

Geometric Modeling

Duarte and Seceleanu (Math. of Comp.: *accepted*) 2020 Duarte (J. Algebra its Appl.) 2016 Duarte and Schenck (Proc. Am. Math. Soc.) 2014

Duarte and Francis (Conf. Proc. Transformables) 2013

Rigidity theory

Algebraic Statistics

Branch of mathematical statistics employing and developing tools from...

Algebraic Geometry

Commutative Algebra

Discrete Geometry

...to tackle problems in statistics

Graphical Models

family of statistical models that describes dependency relations among variables using a graph

Structural equation models

Bayesian networks

 \circ

The soil microbiome

Graphical Models

family of statistical models that describes dependency relations among variables using a graph

Structural equation models

Bayesian networks

 \circ

Discrete statistical models

$$\Delta_{N-1} = \{ (p_1, \dots, p_N) : p_i \ge 0, p_1 + \dots + p_N = 1 \}$$

A discrete statistical model with N outcomes is a family of distributions inside the N-1 dimensional probability simplex

The independence model

a point on the surface is distribution in the mod

X and Y are independent binary random variables $P_{00} + P_{01} + P_{10} + P_{11} = 1$ $P_{ij} \ge 0$ $P_{00}P_{11} - P_{01}P_{10} = 0$

$$\begin{array}{c} \Delta_1 \times \Delta_1 \longrightarrow \Delta_3 \\ (s_0, s_1) \times (t_0, t_1) \longmapsto (s_0 t_0, s_0 t_1, s_1 t_0, s_1 t_1) \\ s_0 + s_1 = 1 \\ s_a \quad t_0 + t_1 = 1 \\ el \end{array}$$

The independence model is a graphical model

X

Graphical Models

family of statistical models that describes dependency relations among variables using a graph

Structural equation models

Bayesian networks

 \cap

Environment

Environment

Activity is independent of the environment

 In a hostile environment a cell gets damaged and might die or survive.
 Survival does not depend on activity

After survival, recovery is not affected by history

The staged tree model $\mathcal{M}_{\mathcal{T}}$ is the image of

 $\psi : [0,1]^4 \longrightarrow \Delta_7$

 $(e_0, a_0, d_0, r_0) \mapsto (e_0 a_0 d_0, ...)$

$$\begin{cases}
P_0 + \dots + P_7 - 1, \\
P_5 P_6 - P_2 P_7, \\
P_4 P_6 - P_1 P_7, \\
P_3 P_6 - P_0 P_7, \\
P_2 P_4 - P_1 P_5, \\
P_2 P_3 - P_0 P_5, \\
P_1 P_3 - P_0 P_4
\end{cases}$$

Activity is independent of the environment

- In a hostile environment a cell gets damaged and might die or survive.
 Survival does not depend on activity
- After survival, recovery is not affected by history

Activity is independent of the environment

- In a hostile environment a cell gets damaged and might die or survive.
 Survival does not depend on activity
- After survival, recovery is not affected by history

Environment 📙 Activity

─ Recovery <u>||</u> (Activity , Environment) | Survival

 Activity is independent of the environment
 In a hostile environment

 a cell gets damaged and
 might die or survive.
 Survival does not depend on activity

After survival, recovery is not affected by history

Environment 📙 Activity

─ Recovery <u>||</u> (Activity , Environment) | Survival

Properties of staged tree models

- Encode conditional independence statements
- Generalize discrete Bayesian networks
- They capture context specific information
- The outcome space is not necessarily a cartesian product
- 3-valent phylogenetic trees are staged tree models (Améndola et al. 2019)

- Discrete exponential families are toric varieties
- Discrete Bayesian networks with chordal graphs are toric varieties

What are the algebraic and geometric properties of staged tree models?

When is a staged tree model a toric variety/discrete exponential family?

Duarte and Görgen (J. Symb. Comput.) 2019

What are the algebraic and geometric properties of staged tree models?

What are the implicit equations that define the model?

Ananiadi and Duarte (J. Algebr. Stat.: in Rev.)

What is the geometry of interventional distributions?

Duarte and Solus (in Prep.)

When is a staged tree model a toric variety/discrete exponential family? Duarte and Görgen (J. Symb. Comput.) 2019

Unifying principle to study equations of discrete graphical models

What are the implicit equations that define the model?

Ananiadi and Duarte (J. Algebr. Stat.: in Rev.)

What is the geometry of interventional distributions?

Duarte and Solus (in Prep.)

Geometric Modeling and Algebraic Statistics

 $\Delta_1 \times \Delta_2 \times \Delta_2 \longrightarrow \Delta_5$ (So, S, Qo, . Q5) \longrightarrow (SoQo, Pi Sia5 * Thm 10 $(S_0,S_1) \times (\mathcal{A}_0 \dots \mathcal{A}_2)$ $\mathcal{T}_{=}(V, E)$ P[v] = Z of all atomic prob. whose root to leaf paths go through V $\Delta_1 \times \Delta_2 \longrightarrow \Delta_5$ Pi Saao 0 eqn

Are there any questions?

https://emduart2.github.io/

 $(P_2)(P_4 + P_{10}) - (P_3 + P_4)(P_3 + P_5)^{12} \in U$

DFG-Graduiertenkolleg MATHEMATISCHE KOMPLEXITÄTSREDUKTION

Dankeschön

Thank you Gracias product of edge lubels from the pathslarting at Ve to the leaf endigat le eans

inded po

 \mathcal{O}

So+5,-1,

BB

Q2-1, Q3+