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» (Hilbert Basis Theorem) Every ideal I in k[z1, . . ., ,] has a finite gener-
ating set. In other words, given an ideal I, there exists a finite collection

of polynomials {f1,..., fs} C k[z1,...,2zy] such that I = (f1,..., fs).

For polynomials in one variable, this is a standard consequence of the one-
variable polynomial division algorithm.

» (Division Algorithm in k[z]) Given two polynomials f, g € k[z], we can
divide f by g, producing a unique quotient ¢ and remainder r such that

f=aqg+r,

and either r = 0, or r has degree strictly smaller than the degree of g.

(2.1) Definition. A monomial order on k[z,. .., z,] is any relation > on

the set of monomials z® in k[zy, ..., Z,] (or equivalently on the exponent

vectors a € Z%,) satisfying:

a. > is a total (linear) ordering relation.

b. > is compatible with multiplication in k[zy, ..., Z,], in the sense that if
z* > 2P and 2" is any monomial, then z%zY = o+ > zA+7 = 2Bz,

c. > is a well-ordering. That is, every non-empty collection of monomials
has a smallest element under >.



(2.2) Definition (Lexicographic Order). Let z* and ” be monomials
in k[z1,...,,]. We say 2% >}, z” if in the difference « — 3 € Z", the
left-most nonzero entry is positive.

Lexicographic order is analogous to the ordering of words used in
dictionaries.

(2.3) Definition (Graded Reverse Lexicographic Order). Let z¢
and z” be monomials in k[z1, . .., Z,). We say 2% >grepter ° if Y oy @i >
S Bi,orif Y a; = Y-, Bi, and in the difference a — 8 € Z", the
right-most nonzero entry is negative.

For instance in k[z, y, 2], with z > y > 2z, we have

(2.4) 23Y%2 >iep v2y8212

since when we compute the difference of the exponent vectors:
3,2,1) — (2,6,12) = (1, -4, —11),
the left-most nonzero entry is positive. Similarly,
By Sua’y'z

since in (3, 6,0) — (3,4,1) = (0,2, —1), the leftmost nonzero entry is posi-
tive. Comparing the lex and grevlex orders shows that the results can be
quite different. For instance, it is true that

2,612 3,2
Ty z >grevle:1: Ty z.

Compare this with (2.4), which contains the same monomials. Indeed, lex
and grevlez are different orderings even on the monomials of the same total
degree in three or more variables, as we can see by considering pairs of
monomials such as z2y%22 and zy*z. Since (2,2,2) — (1,4,1) = (1,-2,1),

22?22 >iep Y2,
On the other hand by the Definition (2.3),

4 2,2,2
Ty z >grevle:z: Ty z.



order > on k[zy,...,Z,], we consider the terms in f = > coz®. Then
the leading term of f (with respect to >) is the product c,z® where =
is the largest monomial appearing in f in the ordering >. We will use the
notation LT (f) for the leading term, or just LT(f) if there is no chance of
confusion about which monomial order is being used.

* (Division Algorithm in k[zy,...,z,]) Fix any monomial order > in
k[z1,...,zy], and let F = (f1,..., fs) be an ordered s-tuple of poly-
nomials in k[zi,...,Z,]. Then every f € k[z1,...,z,] can be written
as:

(2'5) f=a1fi+---+asfs+r,
where a;, 7 € k[z1,...,zy,], and either r = 0, or 7 is a linear combination
of monomials, none of which is divisible by any of LT~ (f1), ..., LT>(fs).

We will call » a remainder of f on division by F'

Exercise 1. Recall from (1.4) that p = 22 + 14?2 — 2 — 1 is an element
of the ideal I = (z? + 22 — 1,22 + y? + (2 — 1)2 — 4). Show, however,
that the remainder on division of p by this generating set F' is not zero.
For instance, using >;.;, we get a remainder

T)F = %yzz—z— 22
(3.1) Definition. Fix a monomial order > on k[z1,...,Zy], and let I C
k[z1,...,z,] be an ideal. A Grébner basis for I (with respect to >) is a

finite collection of polynomials G = {g1,...,9:} C I with the property
that for every nonzero f € I, Lr(f) is divisible by LT(g;) for some .



® (Uniqueness of Remainders) Fix a monomial order > and let I C
k[z1,...,zs] be an ideal. Division of f € k[zi,...,zn] by a Grobner
basis for I produces an expression f = g + r where g € I and no term
in 7 is divisible by any element of L1(I). If f = ¢’ + ' is any other such
expression, then r = 7.

e (Elimination Ideals) If I is an ideal in k[z1,...,z,], then the fth
elimination ideal is

I = INk[Tes, .., Tn)

Intuitively, if I = (f1,..., fs), then the elements of I, are the linear com-
binations of the fi,..., fs, with polynomial coefficients, that eliminate
Ty,...,xe from the equations f; = --- = f; = 0.

» (The Elimination Theorem) If G is a Grobner basis for I with respect
to the lex order (z; > z2 > --- > z,) (or any order where monomi-
als involving at least one of zi,...,x, are greater than all monomials
involving only the remaining variables), then

Ge=GnN k[x1+1,. 3 .,:l:n]

is a Grobner basis of the ¢th elimination ideal I,.

» (Partial Solutions) A point (agy1,...,a,) € V(Ie) C k"¢ is called a
partial solution. Any solution (a,...,a,) € V(I) C k™ truncates to
a partial solution, but the converse may fail—not all partial solutions
extend to solutions. This is where the Extension Theorem comes in. To
prepare for the statement, note that each f in I,_; can be written as a
polynomial in x;, whose coefficients are polynomials in z¢41,...,Zx:

[ =cg(®eq1y. .., 20)a5 + -+ + co(Te41s - - -, Tn)

We call ¢, the leading coefficient polynomial of f if xj is the highest
power of =, appearing in f.

» (The Extension Theorem) If k is algebraically closed (e.g., k = C), then
a partial solution (@41, - - ., ay,) in V(I;) extends to (a¢, agy1,--.,an) in
V(I,—,) provided that the leading coefficient polynomials of the elements
of a lex Grébner basis for I,_; do not all vanish at (ag41,---,an)-



