
Lecture 17: Geometric modeling meets algebraic statistics

In this lecture we will enter the word of geometric modeling by defining blending functions that are
used to parametrize objects (i.e curves and surfaces) in n-dimensional Euclidean space. We will see
that it is it is useful when these functions have one property which is called rational linear precision.
Interestingly such property is equivalent to the associated toric variety having ML degree 1.

A Bézier curve of degree n is a function F : [0, n] → Rω given by
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t
i(n ↑ t)n→i for i ↓ {0, . . . , n} are called blending functions and the Points

P0, . . . , Pi are called control points. Each Pi ↓ Rω. Note that to each lattice point in the segment
[0, n] you associate a blending function.

In 2D a Bézier tensor product patch of degree (m,n) is a function F : [0,m]↔ [0, n] → Rω
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The functions
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s
i(m↑ s)m→i

t
j(n↑ t)n→jfor each i ↓ {0, . . . ,m} and j ↓ {0, . . . , n} are called

blending functions and the P(i,j) are called control points.
We can do a similar thing for the dilated simplex a!2, this gives us triangular patches. A toric

patch is a generalization of this constriction to an arbitrary domain polytope P .
Notation: P is a lattice polytope. The vectors n1, . . . , nr are the inwatd facing primitive normal
vectors of P , F1, . . . , Fr are the corresponding facets, a1, . . . , ar are the corresponding integer
translates in the facet presentation of P .

P = {p ↓ Rd : ↗p, ni↘ ≃ ↑ai, ⇐i = 1, 2, . . . , r.}

The lattice distance function to the face Fi evaluated at p ↓ Rd is

hi(p) = ↗p, ni↘+ ai for i = 1, . . . , r

We write h(p) = (h1(p), . . . , hr(p)). For vectors v = (v1, . . . , vn) and w = (w1, . . . , wn), vw denotes∏
n

i=1 v
wi
i
. The set A = P ⇒ Zd denotes the set of lattice points in P , A = {m1, . . . ,mn}. We will

also use a vector of weights for each lattice point w = (w1, . . . , wn) ↓ Rn

>0.
For j ↓ {1, . . . , n}, define ωj : P → R and ωw : P → R by

ωj(p) =
r∏

i=1

hi(p)
hi(mj), ωw(p) =

n∑

j=1

wjωj(p).

The set of toric blending functions of (P,w) is {ωw,j : j ↓ {1, . . . , n}} where ωw,j : P → R and

ωw,j(p) =
wjεj(p)
εw(p) . Take control points {Qj ↓ Rω : j ↓ {1, . . . , n}}. The toric patch associated to

(P,w) is the map F : P → Rω,

F (p) =
1

ωw(p)

n∑
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wjωj(p)Qj
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Definition 27. The pair (P,w) has rational linear precision of there is a set of rational functions
{ω̂j : j ↓ {1, . . . , n}} defined on Cd satisfying:

1.
∑

n

j=1 ω̂j = 1

2. The functions {ω̂j : j ↓ {1, . . . , n}} define a rational parametrization of XA,w, ω̂ : Cd ↭↭↫
XA,w ⇑ Pn→1. For t ↓ Cd, ω̂(t) = (ω̂1(t), . . . , ω̂n(t))

3. For every p ↓ Relint(P ) ⇑ Cd, ω̂j is defined and a nonnegative real number.

4. Linear precision:
n∑

j=1

ω̂j(p)mj = p for all p ↓ P

Definition 28. The pair (P,w) has strict linear precision if the set of toric blending functions has
rational linear precision.

Theorem 34 ( [10]). The pair (P,w) has rational linear precision if and only if XA,w has ML
degree one

To a toric patch we associate the polynomial

f = fA,w(t) = w1t
a1 + w2t

a2 + · · ·+ wnt
an

and its homogenization

F = FA,w(x) = w1x
â1 + w2x

â2 + · · ·+ wnx
ân

Theorem 35 ( [10]). Let A ⇑ Zd be such that ZA = Zd, w ↓ Rn

>0 be a vector of weights and

f = fA,w(t) = w1t
a1 + w2t

a2 + · · ·+ wnt
an .

Then (P,w) has rational linear precision if and only if the rational function εA,w : Cd
→ Cd defined

by

t ⇓→
1

f

(
t1
ϑf

ϑt1
, t2

ϑf

ϑt2
, . . . , td

ϑf

ϑtd

)

is a birational isomorphism.

Theorem 36. The pair has rationa linear precision if and only if the map ”F : Pd ↭↭↫ Pd defined
by

(x0 : · · · : xd) ⇓→

(
x0

ϑF

ϑx0
: x1

ϑF

ϑx1
: . . . : xd

ϑF

ϑxd

)

is a birational isomorphism.

New Goal: Classify all complex homogeneous polynomials F (x0, . . . , xd) such that ”F : Pd ↭↭↫ Pd

defines a birational isomorphis. In this case we say F defines a toric polar Cremona transformation
(TPCT).
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Remark 5. We say that F (x0, . . . , xd) is homaloidal if the map

(x0 : · · · : xd) ⇓→

(
ϑF

ϑx0
:
ϑF

ϑx1
: . . . :

ϑF

ϑxd

)

defines a birational ismorphism. Homaloidal polynomials appear in a recent characterization of
Gaussian statistical models with ML degree one.

Exercise 30. Prove that F(x,y,z) defines a toric polar Cremona transformation if and only if
F (ax, by, cz) does for a, b, c ↓ C↑. Prove that F(x,y,z) defines a toric polar Cremona transformation
if and only if F (x, y, z)a does for any integer a greater than one.

We end this lecture with the classification of all polynomials F (x, y, z) that define a toric polar
Cremona transformation.

Theorem 37. A homogeneous polynomial F ↓ C[x, y, z] that defines a toric polar Cremona
transformation is equivalent to one of the following:

1. (x+ z)a(y + z)b, a, b,≃ 1

2. (x+ z)a((x+ z)d + yz
d→1) for a ≃ 0, b, d ≃ 1 or

3. (x2 + y
2 + z

2
↑ 2(xy + xz + yz))d, d ≃ 1.

The class of polynomials in (1) gives rise to the class of tensor product patches. The polynomial
in (2) gives rise to triangular patches when a = 0 and d = 1. Otherwise it gives rise to trapezoidal
patches. Note that the coe#cients of the polynomials give all scalings for with the ML degree drops
to one.

Example 61. Consider the polytope P = conv ((0, 0), (1, 0), (0, 1), (1, 1)). Then

P = {(x1, x2) ↓ R2 : x1 ≃ 0, x2 ≃ 0, 1↑ x1 ≃ 0, 1↑ x2 ≃ 0}

The lattice distance functions to the facets of P are the following functions of (x1, x2):

h1 = x1, h2 = x2, h3 = 1↑ x1, h4 = 1↑ x2

The toric blending function for the point (0, 0) is

ω

0
0




(x1, x2) = h1(x1, x2)

h1(0,0)h2(x1, x2)
h2(0,0)h3(x1, x2)

h3(0,0)h4(x1, x2)
h4(0,0) = (1↑ x1)(1↑ x2)

h(0, 0) = (0, 0, 1, 1).
For this example the polynomials that encode a patch with arbitrary weights are

fA,w(s, t) = w1 + w2s+ w3t+ w4st

FA,w(x0, x1, x2) = w1x
2
0 + w2x1x0 + w3x0x2 + w4x1x2.

When w = (1, 1, 1, 1) we get f = (1 + s)(1 + t). The associated map εA,w is

(s, t) ⇓→

(
s

1 + s
,

t

1 + t

)
.
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We see that f is the dehomogenization of (x+ z)(y+ z). If I want to get a parametrization with all
the scalings that give me ML degree drop to one, then I compute

(ax+ cz)(by + cz) = (abxy + acxz + cbzy + c
2).

I then dehomogenize by z to get
c
2 + acx+ cby + abxy

So the ML degree one locus of scalings is the image of the map

(a, b, c) ⇓→ (c2, ac, cb, ab).

If we label the coordinates by w1, w2, w3, w4, then the image of this map is V (w2w3 ↑ w1w4)
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