
SLMath Summer School on Discriminants Exercise Session #17
Geometric Modeling Meets Algebraic Statistics

Exercise 1 (∗) Compute the toric blending functions for the unit square

P = conv((0, 0), (1, 0), (0, 1), (1, 1)),

and prove that they satisfy the sum-to-ne condition. (Hint: use the facet description

of this polytope that was given in the lecture, together with the lattice distance

functions)

Exercise 2 (∗) Verify that the toric blending functions for the trapezoid
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do not satisfy linear precision. The toric blending functions are given by
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Exercise 3 (∗) Give a rational parametrization for the ML degree one locus for the second

Veronese surface ν2(P2). Start by finding a polynomial F (x, y, z) whose monomials

appear as coordinates of the Veronese map ν2.

Exercise 4 (∗) Prove that F defines a toric polar Cremona transformation if and only if

F a defines a toric polar Cremona transformation for all a ∈ N.

Exercise 5 (∗∗) Verify that the polynomial F = x0(x0x2+x2
1) is homaloidal, i.e. the map
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is birational.


